skip to main content


Search for: All records

Creators/Authors contains: "Garrison, Lehman H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a novel simulation-based hybrid emulator approach that maximally derives cosmological and Halo Occupation Distribution (HOD) information from non-linear galaxy clustering, with sufficient precision for DESI Year 1 (Y1) analysis. Our hybrid approach first samples the HOD space on a fixed cosmological simulation grid to constrain the high-likelihood region of cosmology + HOD parameter space, and then constructs the emulator within this constrained region. This approach significantly reduces the parameter volume emulated over, thus achieving much smaller emulator errors with fixed number of training points. We demonstrate that this combined with state-of-the-art simulations result in tight emulator errors comparable to expected DESI Y1 LRG sample variance. We leverage the new abacussummit simulations and apply our hybrid approach to CMASS non-linear galaxy clustering data. We infer constraints on σ8 = 0.762 ± 0.024 and fσ8(zeff = 0.52) = 0.444 ± 0.016, the tightest among contemporary galaxy clustering studies. We also demonstrate that our fσ8 constraint is robust against secondary biases and other HOD model choices, a critical first step towards showcasing the robust cosmology information accessible in non-linear scales. We speculate that the additional statistical power of DESI Y1 should tighten the growth rate constraints by at least another 50–60 ${{\ \rm per\ cent}}$, significantly elucidating any potential tension with Planck. We also address the ‘lensing is low’ tension, which we find to be in the same direction as a potential tension in fσ8. We show that the combined effect of a lower fσ8 and environment-based bias accounts for approximately $50{{\ \rm per\ cent}}$ of the discrepancy.

     
    more » « less
  2. Abstract We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 10 h −1 M ⊙ in a periodic volume of ( 25 h − 1 Mpc ) 3 ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω m and σ 8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω m and σ 8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP 3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. 
    more » « less
  3. ABSTRACT

    Tracking the formation and evolution of dark matter haloes is a critical aspect of any analysis of cosmological N-body simulations. In particular, the mass assembly of a halo and its progenitors, encapsulated in the form of its merger tree, serves as a fundamental input for constructing semi-analytic models of galaxy formation and, more generally, for building mock catalogues that emulate galaxy surveys. We present an algorithm for constructing halo merger trees from abacussummit, the largest suite of cosmological N-body simulations performed to date consisting of nearly 60 trillion particles, and which has been designed to meet the Cosmological Simulation Requirements of the Dark Energy Spectroscopic Instrument (DESI) survey. Our method tracks the cores of haloes to determine associations between objects across multiple time slices, yielding lists of halo progenitors and descendants for the several tens of billions of haloes identified across the entire suite. We present an application of these merger trees as a means to enhance the fidelity of abacussummit halo catalogues by flagging and ‘merging’ haloes deemed to exhibit non-monotonic past merger histories. We show that this cleaning technique identifies portions of the halo population that have been deblended due to choices made by the halo finder, but which could have feasibly been part of larger aggregate systems. We demonstrate that by cleaning halo catalogues in this post-processing step, we remove potentially unphysical features in the default halo catalogues, leaving behind a more robust halo population that can be used to create highly accurate mock galaxy realizations from abacussummit.

     
    more » « less
  4. ABSTRACT

    We introduce the AbacusHOD model and present two applications of AbacusHOD and the AbacusSummit simulations to observations. AbacusHOD is a Halo Occupation Distribution (HOD) framework written in Python that is particle-based, multitracer, highly generalized, and highly efficient. It is designed specifically with multitracer/cosmology analyses for next-generation large-scale structure surveys in mind, and takes advantage of the volume and precision offered by the new state-of-the-art AbacusSummit cosmological simulations. The model is also highly customizable and should be broadly applicable to any upcoming surveys and a diverse range of cosmological analyses. In this paper, we demonstrate the capabilities of the AbacusHOD framework through two example applications. The first example demonstrates the high efficiency and the large HOD extension feature set through an analysis of full-shape redshift-space clustering of BOSS galaxies at intermediate to small scales ($\lt 30\, h^{-1}$ Mpc), assessing the necessity of introducing secondary galaxy biases (assembly bias). We find strong evidence for using halo environment instead of concentration to trace secondary galaxy bias, a result which also leads to a moderate reduction in the ‘lensing is low’ tension. The second example demonstrates the multitracer capabilities of the AbacusHOD package through an analysis of the extended Baryon Oscillation Spectroscopic Survey cross-correlation measurements between three different galaxy tracers: luminous red galaxies, emission-line galaxies, and quasi-stellar objects. We expect the AbacusHOD framework, in combination with the AbacusSummit simulation suite, to play an important role in a simulation-based analysis of the upcoming Dark Energy Spectroscopic Instrument data sets.

     
    more » « less
  5. ABSTRACT

    Dark Energy Spectroscopic Instrument (DESI) will construct a large and precise three-dimensional map of our Universe. The survey effective volume reaches $\sim 20\, h^{-3}\, \mathrm{Gpc}^{3}$. It is a great challenge to prepare high-resolution simulations with a much larger volume for validating the DESI analysis pipelines. AbacusSummit is a suite of high-resolution dark-matter-only simulations designed for this purpose, with $200\, h^{-3}\, \mathrm{Gpc}^{3}$ (10 times DESI volume) for the base cosmology. However, further efforts need to be done to provide a more precise analysis of the data and to cover also other cosmologies. Recently, the CARPool method was proposed to use paired accurate and approximate simulations to achieve high statistical precision with a limited number of high-resolution simulations. Relying on this technique, we propose to use fast quasi-N-body solvers combined with accurate simulations to produce accurate summary statistics. This enables us to obtain 100 times smaller variance than the expected DESI statistical variance at the scales we are interested in, e.g. $k \lt 0.3\, h\, \mathrm{Mpc}^{-1}$ for the halo power spectrum. In addition, it can significantly suppress the sample variance of the halo bispectrum. We further generalize the method for other cosmologies with only one realization in AbacusSummit suite to extend the effective volume ∼20 times. In summary, our proposed strategy of combining high-fidelity simulations with fast approximate gravity solvers and a series of variance suppression techniques sets the path for a robust cosmological analysis of galaxy survey data.

     
    more » « less
  6. ABSTRACT

    We describe our non-linear emulation (i.e. interpolation) framework that combines the halo occupation distribution (HOD) galaxy bias model with N-body simulations of non-linear structure formation, designed to accurately predict the projected clustering and galaxy–galaxy lensing signals from luminous red galaxies in the redshift range 0.16 < z < 0.36 on comoving scales 0.6 < rp < 30 $h^{-1} \, \text{Mpc}$. The interpolation accuracy is ≲ 1–2 per cent across the entire physically plausible range of parameters for all scales considered. We correctly recover the true value of the cosmological parameter S8 = (σ8/0.8228)(Ωm/0.3107)0.6 from mock measurements produced via subhalo abundance matching (SHAM)-based light-cones designed to approximately match the properties of the SDSS LOWZ galaxy sample. Applying our model to Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 14 (DR14) LOWZ galaxy clustering and galaxy-shear cross-correlation measurements made with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) imaging, we perform a prototype cosmological analysis marginalizing over wCDM cosmological parameters and galaxy HOD parameters. We obtain a 4.4 per cent measurement of S8 = 0.847 ± 0.037, in 3.5σ tension with the Planck cosmological results of 1.00 ± 0.02. We discuss the possibility of underestimated systematic uncertainties or astrophysical effects that could explain this discrepancy.

     
    more » « less